
22 The Delphi Magazine Issue 32

Sweet Dreams
A better file search with regular expression matching
by Julian Bucknall

Time for a quick test. For those
of you who haven’t tried this

before, the result is a little discon-
certing and a bit of a nightmare.
Listing 1 shows some code using
the directory search routines Find-
First, FindNext and FindClose.

FindFirst sets up a data struc-
ture and finds the first file to match
the path and attributes. FindNext
continues the search, getting the
remainder of the files, one at a
time. FindClose clears up the data
structure. All three routines are
simple enough wrappers around
the Windows or Win32 routines.

Analysing the code, we’re asking
for all subdirectories in the
e:\articles\filedir directory.
Simple enough, no? So what would
the result be? All subdirectories in
this particular directory, right?
Bzzzzt, wrong. In actual fact, this
code gives you all subdirectories
(hooray!) together with all the
normal files (huh?). Even in this
day and age of 32-bit operating sys-
tems with APIs out the wazoo, it
still gives you all these normal files
as well. So every time you want to
use these routines you have to
remember to filter out all the files
you don’t want.

And there’s another thing as
well. The wildcards. Has it ever
bugged you that we’re still living
with ? and * as the only wildcards
we can use with filenames? I mean,
really, come off it. In these days of
ActiveX and multi-tier applications
we can still only specify groups of
files by means of the same wild-
cards we used back in the early 80s
with Turbo Pascal.

Enough already. Let me reveal
what we’ll be developing here in
this article. We shall be designing
replacements for the three FindXXX
routines that will filter out the
unwanted files according to our
requested attributes, and we shall
be writing a regular expression
parser to enable better wildcard

var
SR : TSearchRec;
FFRes : integer;

begin
...
FFRes := FindFirst(‘e:\articles\filedir*.*’, faDirectory, SR);
while FFRes = 0 do begin
FileList.Add(SR.Name);
FFRes := FindNext(SR);

end;
FindClose(SR);
...

➤ Listing 1

FindFirstEx(SomePath, ‘TST[0-9]+X.LOG’, [detFile], [deaNormal, deaArchive], SR);
while FFRes = 0 do begin
FileList.Add(SR.srName);
FFRes := FindNextEx(SR);

end;
FindCloseEx(SR);

➤ Listing 2

matching. By the end of the article
we shall be writing code similar to
that shown in Listing 2 which will
find all files whose first three let-
ters are TST, followed by zero or
more digits, followed by X.LOG, and
the files will have only their archive
bit set or no attribute bits set at all.
Sweet dreams, indeed. On the way,
we shall be touching on parsers,
state machines and greedy
algorithms.

Let’s Go!
First things first, and the easiest.
The ultimate method we shall use
is to retrieve all entries in the direc-
tory with FindFirst and FindNext
and do the filtering ourselves. After
all I’m sure we can do a better job
ourselves and, as we have already
seen, we certainly can’t do worse.
One of the main problems with the
‘raw’ routines is the silly bit values
that mix types of directory entry
(subdirectories, files, volume id)
with attributes of the directory
entries (hidden, system, readonly,
changed). So let’s create a couple
of enumerated types (TdeType and
TdeAttr) and then we can use sets
of these types to pass attributes
and entry types to our routines
(Listing 3).

type
TdeType = (detFile,

detDirectory,
detVolumeID);

TdeTypeSet = set of TdeType;
TdeAttr = (deaNormal,

deaAltered,
deaReadOnly,
deaHidden,
deaSystem);

TdeAttrSet = set of TdeAttr;

➤ Listing 3

Every time we read a new file-
name with FindFirst and FindNext
we check its attribute field to see if
it matches the types and attributes
we want. If they do match, we then
try and match the filename itself
with our regular expression
engine. I won’t go into the code for
the first bit here: it’s all pretty
simple and you can check it out on
the diskette.

Doubleplusgood
So, now onto the second part:
regular expressions. What exactly
is a regular expression? It is a way
of defining a pattern that will be
used to match text. The Delphi
IDE’s Find function has a regular
expression search facility, for
example: instead of trying to find
some exact text you can specify a
text pattern and the Find function

April 1998 The Delphi Magazine 23

will try and match text to that pat-
tern. Regular expressions come in
many flavors. Borland used to ship
a GREP program with their prod-
ucts that enabled you to do pattern
matching across many files.
Languages like Perl have built in
regular expression matchers and
the file wildcards are a poor man’s
regular expression language for
files in DOS and Windows.

Actually, it’s going to get rather
annoying to use the full phrase
‘regular expression’ all the time so,
if it’s all right with you, let’s
shorten it to ‘regex.’ It’ll save on
paper, and our Editor won’t think
I’m trying to pad out this article.

Let’s in fact start with the DOS
file wildcards. Here they are, with
their accepted meanings:

? Match any single
arbitrary character

* Match zero or more
arbitrary characters

So the wildcard pattern ???.* will
be matched by ABC.TXT and ABC.T
but not by AB.TXT or ABCD.T. The
three ?s force exactly three charac-
ters to be matched, whereas the *
can match any number of charac-
ters. The period . in the regex is
called a literal character and it
must be matched exactly. The
other characters in the pattern,
those that have some subtle
meaning, are generally called
metacharacters.

As a side note, the behavior of
the literal character . in our regex
language will differ from that in
DOS. In DOS, every file that had no
extension was assumed to have an
implied . at the end, ie *. as a wild-
card pattern would match file-
names without extensions like
ABC.. In our regex language it won’t:
if the regex has a . then it will
match a filename with an explicit .
in it and not otherwise.

Now let’s introduce the regex
language enhancements we shall
be using:

\ Escape character

+ zero or more copies of
the prior subpattern

[...] character class

The escape character precedes
another character that might oth-
erwise be interpreted by the
parser as something else. For
example, you can create files with a
+ character in them but our regex
language uses + as a metacharac-
ter. So if we wanted to include a
plus sign in a pattern, we would
escape it with the backslash: \+.

The plus sign, when un-escaped,
signifies that the previous subpat-
tern can be repeated zero or more
times. So X+ in a regex should be
read as ‘the text to be matched at
this point can have no X, or one or
more Xs.’

Lastly, the character class pat-
tern defines a set of characters,
exactly one of which must be
matched in the text being tested.
You specify the characters in the
set inside the square brackets. For
example [abc] means that the text
being matched must have an a, b, or
c at this point. And that’s it. As a
space saving device you can spec-
ify a range of characters like this:
[a-z], which should be read as any
character from a to z inclusive. Of
course you can mix and match:
[0-9abc] means any digit or one of
the characters a, b or c.

There’s yet another refinement
of character classes: you can
negate them. Instead of saying ‘the
next character must be any one of
a, b, or c,’ you might like to say ‘the
next character can be anything but
an a, b or c.’ Rather than spelling
this out longwindedly (giving the
other 253 characters inside brack-
ets, or as two or more ranges) you
can specify a negated class: [^abc].
This should be read as ‘anything
but a, b or c.’ The caret ^ must
appear as the first character after
the left bracket.

Some of you might have noticed
that the - character is a metachar-
acter within the character class. So
what would you do if you wanted
the dash as an item in the class
rather than its metacharacter
meaning? Escape it of course, with
the \ escape character. The same
goes for the ^ and] characters:
[\^\-\]] means a character class
that consists of a ^, - or].

Let’s reinforce what we’ve just
learnt, by interpreting the
somewhat ridiculous

abc*[0-9]+[^xyz]?

Starting from the left this pattern
will match text that starts with the
three letters abc, followed by zero
or more arbitrary characters, fol-
lowed by zero or more digits, fol-
lowed by a character that’s not an
x, y or z, followed by a single
arbitrary character. Phew!

Let’s be a little more creative
and yet concrete. A test applica-
tion I wrote recently created a
series of snapshot log files. Their
names were formatted as a T, fol-
lowed by the time in HH-MM format
followed by the extension .LOG.
What would be the regex for this
set of files? I started off with

T[0-9]+-[0-9]+.LOG

which translates to T, followed by
zero or more digits, followed by -,
followed by zero or more digits,
followed by .LOG. However, it can
easily be seen that a file called
T-.LOG would be matched by this
regex. (Why?) My next try was
much better:

T[012][0-9]-[0-5][0-9].LOG

Try saying out loud what this regex
says: the more you read them the
more it helps you understand
them. Anyway, apart from the fact
that a file name of T29-00.LOG
would match (which is invalid
according to my formatting rules
for these log files since 29 is not a
valid hour value), this is about as
far as we can get with the particu-
lar regex language I have defined.
To properly exclude filenames like
this, I would have to incorporate OR
logic into my file regex language
and coding that will have to wait
for a rainy day .

Do You Want To Break Up?
There are two steps to using a
regex pattern string. The first one
is compiling the string into some
representation that suits us: this
will also help us validate the pat-
tern. The second one is applying

24 The Delphi Magazine Issue 32

the compiled regex against various
text strings. Sometimes both these
steps are combined into one, but
it’s generally a waste of time to con-
tinually validate the same string
over and over. So we’ll be compil-
ing the regex and then applying it
in two separate steps: the first to
be done in our replacement for
FileFirst and the second in File-
First and FileNext. The compiled
regex will be disposed of in the
FileClose routine. Great, I love it
when a plan comes together!

Onto validation and compiling.
The data structure I’m going to pro-
pose for the compiled regex is a
linked list. Each node in the list will
be a separate subpattern or token
in the string. The basic node will
look like this:

type
PBaseNode = ^TBaseNode;
TBaseNode = packed record
NextNode : PBaseNode;
TokenType : TTokenType

end;

The TokenType field will indicate
what type of token the node repre-
sents: a literal character, a ?, a *, a
character class or whatever. Now
obviously for some nodes or
tokens we shall require some more
information. For a ? token, we don’t
have to store anything else in the
node. For a literal character token
we’ll store an extra character with
the node. For a character class
token we’ll store a set (ie set of
char, a 32-byte variable) with the
node. What about the * and +
tokens? The first thing to realize is
that ?+ (any character zero or more
times) is a synonym for * (zero or
more arbitrary characters). So in
fact we don’t need to store a
separate token for *, we can use ?+.
The other tokens we need to store
are a literal character followed by
+, and a character class followed by
+. There are no other tokens we
need worry about in our regex
language.

So, we have three tokens for
single characters and three tokens
for the same token types, but zero
or more times. The + metacharac-
ter is called a closure (I’m not
really sure why), so we end up with

an any character token and its
closure, a literal character and its
closure, and a character class and
its closure.

One last thing before I let you off
for a deep breath and some coffee.
File names in DOS and Windows
are case-insensitive, in other
words, ABC.DEF is the same as
abc.def. It makes sense to convert
characters to the same case when
we compile to save us having to do
any continual changing of case
later on.

Normally, whether we use
uppercase or lowercase makes no
difference. However, I keep getting
caught out with this: when I say
‘normally’ I usually mean ‘here in
the US.’ Elsewhere in the world it is
not so clear-cut, and with some
other code pages there are more
lowercase characters than upper-
case ones. So, we shall convert
every character to lowercase
before we use it and, of course, we
shall use the specific Windows API
to do it. Beware though: if you write
[A-z] as a character class in the
middle of a pattern string, the
parser will in fact read it as [a-z],
and not as every character from A
all the way though z with all

Ch := LowerCaseChar(aPattern[Inx]);
case Ch of
c_frxAnyChar :
AllocPatternNode(aBinPattern, c_binAnyChar);

c_frxClosure :
AllocPatternNode(aBinPattern, c_binAnyClosure);

➤ Listing 4

c_frxEscape :
begin
if (Inx = PatLen) then begin
FRXFreeBinPattern(aBinPattern);
Result := frxcrMissingChar;
Exit;

end;
Token := AllocPatternNode(aBinPattern, c_binLiteral);
inc(Inx);
Token^.bpnChar := LowerCaseChar(aPattern[Inx]);

end;

➤ Listing 5

c_frxPatClosure :
begin
if not CloseLastPatternToken(aBinPattern) then begin
FRXFreeBinPattern(aBinPattern);
Result := frxcrNoSubpattern;
Exit;

end;
end;

➤ Listing 6

the punctuation characters in
between.

So how do we compile the pat-
tern? Well, we read the string char-
acter by character, looking for our
special metacharacters. If we find a
?or * character, we simply create a
new node and add it to the linked
list (Listing 4).

AllocPatternNode allocates a
new node of the correct type and
adds it to the end of the aBinPat-
tern linked list. If we find a \ we
look at the next character and
create a literal character node for
it. Of course, there’s an error
should the \ be the last character
in the pattern string (Listing 5).

The FRXFreeBinPattern routine
frees the entire linked list created
so far. If we find a +we have to close
the last token on the linked list;
there is an error if the last token is
already closed (eg, we can’t have
++ in the string) or there is no last
token (ie, + was the first character
in the pattern string). The Close-
LastPatternToken routine shown in
Listing 6 does all this, it returns
False if there was an error.

If the character is a right bracket
we shall mark this as an error (List-
ing 7). The character class parser

26 The Delphi Magazine Issue 32

c_frxClassRight :
begin
FRXFreeBinPattern(aBinPattern);
Result := frxcrMissingLeft;
Exit;

end;

➤ Listing 7

case Ch of
..the metacharacters..

else
{any other character is a literal}
Token := AllocPatternNode(aBinPattern, c_binLiteral);
Token^.bpnChar := Ch;

end;{case}

➤ Listing 8

c_frxClassLeft :
begin
{it can't appear at the end of the pattern}
if (Inx = PatLen) then begin
FRXFreeBinPattern(aBinPattern);
Result := frxcrBadClass;
Exit;

end;
{create a new token as if everything was OK}
Token := AllocPatternNode(aBinPattern, c_binClass);
{parse the character class}
Result := ParseCharClass(aPattern, PatLen, Inx, Token);
if (Result <> frxcrSuccess) then begin
FRXFreeBinPattern(aBinPattern);
Exit;

end;
end;

➤ Listing 9

code we’ll show in a minute (List-
ing 9) parses the right bracket as
part of the character class and
therefore in our outer loop we
should never see it.

Leaving aside the left bracket for
a moment, any other character we
see is a literal character (Listing 8).

Take Your Pain Away
Now the left bracket (Listing 9).
This, as we know, signifies the start
of a character class definition, and
we must read all the characters
until we reach the right bracket (or
run off the end of the string, which
is an error). To make this easy on
myself when I first wrote this, and
also to keep the character class
checking code entirely separate
from the outer loop, I made it a
separate routine called ParseChar-
Class.

The code in ParseCharClass looks
much the same as the outer code: a
loop and a case statement looking
for metacharacters, the metachar-
acters being a different set than
that in the outer loop. The loop fin-
ishes when either we find the right
bracket to close off the class defini-
tion, or we run out of characters in
the pattern string (which will be an
error, missing right bracket).

The easiest metacharacter to
parse is ^. It must appear as the
first character in the pattern string
after the left bracket, otherwise it’s
an error. If we find one we make a
note that we must negate the class
(Listing 10).

Before considering literal and
escaped characters, we need to
think a little about ranges. A range
consists of a literal character, fol-
lowed by -, followed by another lit-
eral character. The end of the
range cannot be immediately fol-
lowed by another -, as in a-c-e,
because this is invalid. So when
we’re dissecting a range we have to
be very careful. In fact, we can see
that there are three states to

c_frxNegate :
begin
{the class negation can only be the first character}
if (aInx <> FirstInx) then
Exit;

{make a note that we have a negated class}
NegatedClass := true;

end;

➤ Listing 10

parsing a range: (a) the first literal
character has been read, (b) the
dash character has been read, (c)
the second literal character has
been read.

If we are in state (a), we can
move to state (b) or we can remain
in state (a) if the next character is
another literal (as in xyz). If we are
in state (b) we have to move to
state (c), there is no other choice:
the dash must be followed by a lit-
eral character. Once we are in state
(c) we have to move back to state
(a) again (ie, we cannot move to
state (b) by reading another dash).
This is a very simple state machine
that will be correctly terminated
by reading a right bracket either in
state (a) or in state (c). To code
this we create an enumerated type:

type
TRangeState = (CouldStart,
Started, Completed);

State (a) is the value CouldStart: we
could start a range if we wanted to
as we’ve just read a literal charac-
ter. State (b) is Started: we’ve just

started a range by reading the
dash character. State (c) is Com-
pleted: we’ve just completed a
range. The whole loop starts ini-
tially with the state set to Com-
pleted, in other words we have to
move to state (a) first thing. The
code for a literal character looks
similar to that shown in Listing 11,
which neatly encapsulates this
state machine.

Notice that when we move to
state (c) we add all of the charac-
ters in the range to our set. For
state (a) we include that single lit-
eral in our character set. Escaped
characters have exactly the same
code.

The code for parsing the -
metacharacter closes off the state
machine (note that we allow a - as
the first character in the class defi-
nition, in which case it becomes a
literal character, Listing 12).

When we encounter a right
bracket, it’s all over (Listing 13).

After the loop is over, we have
been successful in parsing a valid
character class if (1) we found a
right bracket (duh!), and (2) the

April 1998 The Delphi Magazine 27

if (RangeState = Started) then begin
if (Ch <= FirstChar) then
Exit;

for ChInx := succ(FirstChar) to Ch do
Include(aToken^.bpnCharClass, LowerCaseChar(ChInx));

RangeState := Completed;
end else begin
Include(aToken^.bpnCharClass, Ch);
FirstChar := Ch;
RangeState := CouldStart;

end;

➤ Listing 11

c_frxClassRange :
begin
{if this is the first character in the class then it's a literal character}
if (aInx = FirstInx) then
Include(aToken^.bpnCharClass, c_frxClassRange)

{otherwise it's a range character, so we must be able to start a range}
else if (RangeState <> CouldStart) then
Exit

{make a note that we're in a range}
else
RangeState := Started;

end;

➤ Listing 12

c_frxClassRight :
begin
{the right bracket cannot be the first character}
if (aInx = FirstInx) then
Exit;

{make a note that we found the right bracket and break out of the loop}
FoundRightBracket := true;
Break;

end;

➤ Listing 13

range state is not Started (ie, is not
in state (b)). If we have a valid
character class, then all we then
need to do is to check to see
whether the class was negated,
and if so negate it.

Please do refer to the entire code
on this month’s diskette for all the
missing glue code that brings all
this pattern string parsing
together.

The First Cut
Once we’ve successfully parsed a
pattern string and created a com-
piled version of it, we can try and
apply it to various file names. This
matching process will either
return true (the file name does
match the compiled regex) or false
(the file name does not match the
regex).

So what does it really mean to
‘match the regex’? What happens
is that we read through the regex
node by node and read through the
filename string character by char-
acter and see if the next node
matches the next character. For
the any character, literal character

and character class tokens this is
easy. The any character token
matches... (you guessed it) any
character; the literal character
token has to match exactly that
character and nothing else; the
character class token matches the
character if the character appears
in the node’s character set.

We finish successfully when we
run out of regex tokens at exactly
the same time we run out of charac-
ters in the filename. If there are
tokens left over after we’ve
matched all the characters, for
example: t[0-9] matching t, or
there are more characters left over
after we’ve run out of tokens, for
example t[0-9] matching t1a, then
the regex as a whole did not match
the filename.

Piece of cake! We’re really
motoring now! Unfortunately we
then fetch up on the closure prob-
lem, which I’ve been momentarily
avoiding. Recall that ‘closure’
means the zero or more matches
ability. How on earth do we match
zero or more characters? What
does that mean exactly? When do

we match zero and when do we
match more? When do we stop
matching characters, if there are
possibly more than one? And so
on.

How Long?
Let us look at a specific regex pat-
tern string and a Win32 long file
name:

Regex: t*.1*
File: tabc.def.123

From our initial discussion in this
article you can recognize that the
regex says: the filename must start
with a t, followed by zero or more
arbitrary characters, followed by a
period, followed by a 1, followed
by zero or more arbitrary charac-
ters. Let’s try and manually match
the filename to the regex. It starts
with a t, which the regex requires,
so we are OK so far. Now we have
to match zero or more characters.
Mmm. Do we match the minimum
allowed (ie, zero) and then move
on? Do we match the maximum
allowed (ie, the rest of the charac-
ters in the filename)? Do we match
one or two characters or some-
thing else instead?

For our first try, let’s take the
minimal viewpoint: always match
as little as we can with a closure.
Assume we match no characters.
Advance the regex token to the lit-
eral period, and get the next char-
acter: it’s an a. They don’t match.
So are we done? No, we’re not: we
made an assumption that we only
needed to match zero characters.
Maybe we were wrong and we
needed to match one character
with the * closure. OK, retrace our
steps and match one character.
Advancing again, we are trying to
match the . token with a b. Doesn’t
match again. Retrace our steps
and match two characters with the
* closure. You can see that this still
isn’t going to work. So, we retreat,
match three characters (the abc)
and suddenly the next token
matches the first period in the file-
name. Great! Advance to the next
token and character, and we are
trying to match a 1 literal with a d.
They don’t, so back we go to our
previous closure and match 4

28 The Delphi Magazine Issue 32

characters. Without filling this
magazine with the laborious steps
in between, I’m sure you can see
that eventually we match abc.def
to the first * closure, and 23 to the
second. Using the second * closure
meant matching no characters
(error, more characters to go),
matching one character (error,
more characters to go) and finally
matching two characters. But
getting there was so long-winded.

For our second try, let’s take the
maximal viewpoint: always match
as much as we can with a closure.
This is known as the greedy algo-
rithm: closures try and grab as
many characters as they can. OK,
here goes: assume the first * clo-
sure token matches all the remain-
ing characters in the filename,
wham bam. We’re not done

because we have some more
tokens to use. So back up one char-
acter (ie, the first * matches all but
one character). Advance to the
next token and character. They
don’t match. Back up another char-
acter. Still no go. Back up one
more. We’re there. The period lit-
eral token matches the second
period in the filename, the 1 literal
token matches the 1, and the
second * closure matches the rest
of the filename. Boom, done.

In fact, research has shown that
the greedy algorithm is usually the
best in terms of speed, since in gen-
eral there is less backtracking to
do. For our implementation of
regular expressions, it probably
doesn’t make too much difference,
after all filenames tend to be short,
but I’m sure that you would agree
that trying to apply the standard
. as a non-greedy algorithm in

your head will convince you that
Greed is Good.

The Walk
Having made that little digression
into how to match closures, we’re
still left with a problem: how are
we to implement them? In the lit-
erature, closures are usually
implemented using recursion.
There’s some routine that takes a
token and a substring and returns
true if the token (and subsequent
tokens) match the substring. The
routine basically keeps calling
itself with the next token and a
shorter substring, until we run out
of tokens or substrings or both.

Anything recursion can do, we
can do better. We’ll set up a stack
to hold closure tokens as we get to
them. If we get to a point where we
have a mismatch between a token
and a character from the filename,

➤ Listing 14

function FRXMatchesPattern(aBinPattern : PfrxBinPattern;
const aFileName : string) : boolean;

type
TCheckPoint = packed record
cpToken : PBinPatNode;
cpStart : word;
cpInx : word;

end;
var
FNLen : integer;
Inx : integer;
StartInx: integer;
Token : PBinPatNode;
BadSimpleMatch : boolean;
TokenSP : integer;
TokenStack : array [0..127] of TCheckPoint;

begin
{assume that we'll fail}
Result := false;
{if the pattern is empty, there's no match}
if (aBinPattern = nil) then
Exit;

{if the filename is the empty string, there's no match}
FNLen := length(aFileName);
if (FNLen = 0) then
Exit;

{prepare closure token stack to be empty}
TokenSP := -1;
{prepare for loop}
Token := PBinPatNode(PBinPatHeader(aBinPattern)^.bphData);
Inx := 1;
while True do begin
BadSimpleMatch := false;
case Token^.bpnToken of
c_binAnyClosure :
begin
{push it onto the stack as a greedy token}
inc(TokenSP);
with TokenStack[TokenSP] do begin
cpToken := Token;
cpStart := Inx;
cpInx := succ(FNLen);

end;
{indicate we've matched everything}
Inx := succ(FNLen);
{advance the token}
Token := Token^.bpnNext;

end;
c_binLitClosure,
c_binClsClosure :
begin
{match as many chars as we can}
StartInx := Inx;
while (Inx <= FNLen) and
MatchOneChar(Token, aFileName[Inx]) do
inc(Inx);

{if we matched at least one char...}
if (StartInx < Inx) then begin
{push it onto the stack as a greedy token}
inc(TokenSP);

with TokenStack[TokenSP] do begin
cpToken := Token;
cpStart := StartInx;
cpInx := Inx;

end;
end;
{advance the token}
Token := Token^.bpnNext;

end;
else {the current token is a simple token}
{if there is a current character and it matches the
current token, advance}
if (Inx <= FNLen) and
MatchOneChar(Token, aFileName[Inx]) then begin
Token := Token^.bpnNext;
inc(Inx);

end
{otherwise there is no current character
or it did not match}
else begin
{if there is no closure to revert to,
we're done but failed}
if (TokenSP = -1) then
Exit;

{make a note we failed to match: this'll trigger an
operation at the end of the loop to revert to a
previous closure}
BadSimpleMatch := true;

end;
end;{case}
{we're finished and successful if the current token is
nil (ie, we ran out of tokens) and the current
character index is greater than the length of the
string (ie, we ran out of string)}
if (Token = nil) and (Inx > FNLen) then begin
Result := true;
Exit;

end;
{if the current token is nil or there was a bad simple
match, we need to revert to a previous closure and back
up one character}
if (Token = nil) or BadSimpleMatch then begin
while (TokenSP <> -1) do begin
with TokenStack[TokenSP] do begin
if (cpInx > cpStart) then begin
dec(cpInx);
Token := cpToken^.bpnNext;
Inx := cpInx;
Break;{out of while loop}

end;
dec(TokenSP);

end;
end;
{if there are no more closures or the current token is
still nil, we're done but failed}
if (TokenSP = -1) or (Token = nil) then
Exit;

end;
end;{of forever loop}

end;

April 1998 The Delphi Magazine 29

we shall back up to the previous
closure token (it’ll be at the top of
the stack), decrement the number
of characters it refers to and con-
tinue from that point. If the closure
token at the top of the stack runs
out of characters it can match, we
pop it off the stack and continue
with the new closure token that’s
at the top of the stack. Eventually,
we either run out of closure tokens
on the stack (in which case we
didn’t match the regex to the file-
name) or we match all the tokens
to the filename at some stage.

The stack is implemented as a
simple array of records with an
integer variable to act as the stack
pointer. Each record has enough
information to checkpoint a par-
ticular closure: the token itself, the
point in the string where it was
applied and the end point in the
string to which it applies. If the
stack pointer is -1 the stack is
empty, otherwise the stack pointer
is the index in the array of the top
of the stack. Popping means decre-
menting the stack pointer, pushing
means incrementing the stack
pointer and storing the checkpoint
at that element.

Look at the FRXMatchesPattern
code in Listing 14: it implements
the matching logic. The preliminar-
ies show that the compiled regex
must have at least one token to
match and the filename must have
at least one character. Then, after
some minor setup, we’re in the
loop! It’s an infinite loop and we’ll
be exiting it and the routine at vari-
ous points within the code in the
loop itself. We start the loop off
with a case statement looking at
the current token type.

For an any character closure
(the * metacharacter) we push the
closure onto the stack, and match
the rest of the filename string (ie,

set the current charac-
ter index to one more
than the length of the
string). Then we
advance to the next
token.

For a literal charac-
ter closure or a charac-

ter class closure, we match as
many characters in the filename as
we can. If we match at least one,
push the closure token onto the
stack. Then advance to the next
token.

For any other token (it must be a
simple one) try and match it to the
current character. If we do,
advance to the next token and
advance the index of the current
character in the filename string. If
it doesn’t match, have a look at the
closure token stack. If it’s empty,
we’ve failed to match the regex to
the filename, so bail out now. Oth-
erwise we set a boolean flag to say
that we failed to match, and it will
trigger some code at the end of the
loop.

After this case statement, we
check the current token and the
current character. If the current
token is nil, we’ve run out of
tokens. If the current character is
greater than the length of the
string, we’ve run out of filename. If
both are true, we’ve succeeded:
the regex matches the filename.

If we’re still in the loop after this
test, we check the current token. If
it is nil, we’ve run out of tokens, so
what should we do now? If we
failed a simple token match then
we need to do something else as
well. In either case what we need to
do is backtrack. Look at the top of
the stack. If the closure token there
can be backed up by one character,
do so. Get the next token from this
closure token, and set the charac-
ter index. Break out of the stack-
checking loop. If, on the other
hand, the token at the top of the
stack has no more characters to
back up, pop it off, and repeat this
algorithm on the token that’s now
at the top of the stack. If we manage
to pop off all the closure tokens
from the stack, we’ve failed to

match the regex to the filename
and so we bail out.

Wrap It Up
And that’s it. At long last! We have
all the pieces together to write our
own extended FindFirstEx,
FindNextEx and FindCloseEx rou-
tines. After the experience of pars-
ing and applying regexes to
filenames, a discussion of how to
wrap it all up into these new
replacement routines would be
somewhat of an anticlimax
because of its sheer simplicity. So I
will leave you to have a look at the
code on the diskette. As usual you
are free to use it in your own appli-
cations as you wish, but I retain all
copyright to the source code. I’ve
also included a little test program
called EXAMPLE (Figure 1).

Julian Bucknall works for Turbo-
Power Software. He is eurhythmi-
cally regular in his expressions. He
can be reached by e-mail at
julianb@turbopower.com or on
CompuServe at 100116,1572.

Copyright (c) 1997 Julian M Bucknall

➤ Figure 1

	Let’s Go!
	Doubleplusgood
	Do You Want To Break Up?
	Take Your Pain Away
	The First Cut
	How Long?
	The Walk
	Wrap It Up

